模型蒸馏
的核心思想是在保持较高预测性能的同时,通过知识迁移的方式,将一个复杂的大模型(教师模型
)的知识传授给一个相对简单的小模型(学生模型
),极大地降低了模型的复杂性和计算资源需求,实现了模型的轻量化和高效化。
以下是一个简单的模型蒸馏代码示例,使用PyTorch框架实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
| teacher_model = model_xxx student_model = model_xxx
criterion = nn.CrossEntropyLoss() optimizer_teacher = optim.optimizer1 optimizer_student = optim.optimizer2
trainset = datasets.data_xxx trainloader = torch.utils.data.DataLoader()
for epoch in range(NEPOCH): running_loss_teacher = 0.0 running_loss_student = 0.0 for inputs, labels in trainloader: outputs_teacher = teacher_model(inputs) loss_teacher = criterion(outputs_teacher, labels) running_loss_teacher += loss_teacher.item() outputs_student = student_model(inputs) loss_student = criterion(outputs_student, labels) + 0.1 * torch.sum((outputs_teacher - outputs_student) ** 2) running_loss_student += loss_student.item() optimizer_teacher.zero_grad() optimizer_student.zero_grad() loss_teacher.backward() optimizer_teacher.step() loss_student.backward() optimizer_student.step()
|
参考链接1:深度学习中的模型蒸馏技术:实现流程、作用及实践案例-CSDN博客