1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
| import torch import torch.nn as nn import torch.nn.functional as F import math
class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super(PositionalEncoding, self).__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe)
def forward(self, x): return x + self.pe[:, :x.size(1)].detach()
class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.d_model = d_model self.num_heads = num_heads assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = nn.Linear(d_model, d_model) self.wk = nn.Linear(d_model, d_model) self.wv = nn.Linear(d_model, d_model)
self.dense = nn.Linear(d_model, d_model)
def split_heads(self, x, batch_size): x = x.view(batch_size, -1, self.num_heads, self.depth) return x.permute(0, 2, 1, 3)
def attention(self, query, key, value, mask=None, dropout=None): matmul_qk = torch.matmul(query, key.transpose(-2, -1)) dk = query.size(-1) scaled_attention_logits = matmul_qk / math.sqrt(dk)
if mask is not None: scaled_attention_logits += (mask * -1e9)
attention_weights = torch.softmax(scaled_attention_logits, dim=-1) if dropout is not None: attention_weights = dropout(attention_weights)
output = torch.matmul(attention_weights, value) return output, attention_weights
def forward(self, query, key, value, mask=None, dropout=None): batch_size = query.size(0)
query = self.split_heads(self.wq(query), batch_size) key = self.split_heads(self.wk(key), batch_size) value = self.split_heads(self.wv(value), batch_size)
output, attention_weights = self.attention(query, key, value, mask, dropout) output = output.permute(0, 2, 1, 3).contiguous().view(batch_size, -1, self.d_model)
return self.dense(output)
class FeedForwardNetwork(nn.Module): def __init__(self, d_model, d_ff=2048, dropout=0.1): super(FeedForwardNetwork, self).__init__() self.linear1 = nn.Linear(d_model, d_ff) self.linear2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout)
def forward(self, x): x = F.relu(self.linear1(x)) x = self.dropout(x) return self.linear2(x)
class EncoderLayer(nn.Module): def __init__(self, d_model, num_heads, d_ff=2048, dropout=0.1): super(EncoderLayer, self).__init__() self.attention = MultiHeadAttention(d_model, num_heads) self.ffn = FeedForwardNetwork(d_model, d_ff, dropout) self.layernorm1 = nn.LayerNorm(d_model) self.layernorm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout)
def forward(self, x, mask=None): attn_output = self.attention(x, x, x, mask, self.dropout) x = self.layernorm1(x + attn_output)
ffn_output = self.ffn(x) x = self.layernorm2(x + ffn_output)
return x
class DecoderLayer(nn.Module): def __init__(self, d_model, num_heads, d_ff=2048, dropout=0.1): super(DecoderLayer, self).__init__() self.attention1 = MultiHeadAttention(d_model, num_heads) self.attention2 = MultiHeadAttention(d_model, num_heads) self.ffn = FeedForwardNetwork(d_model, d_ff, dropout) self.layernorm1 = nn.LayerNorm(d_model) self.layernorm2 = nn.LayerNorm(d_model) self.layernorm3 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout)
def forward(self, x, enc_output, look_ahead_mask=None, padding_mask=None): attn1_output = self.attention1(x, x, x, look_ahead_mask, self.dropout) x = self.layernorm1(attn1_output + x)
attn2_output = self.attention2(x, enc_output, enc_output, padding_mask, self.dropout) x = self.layernorm2(attn2_output + x)
ffn_output = self.ffn(x) x = self.layernorm3(ffn_output + x)
return x
class TransformerEncoder(nn.Module): def __init__(self, vocab_size, d_model, num_heads, num_layers, d_ff=2048, dropout=0.1): super(TransformerEncoder, self).__init__() self.embedding = nn.Embedding(vocab_size, d_model) self.positional_encoding = PositionalEncoding(d_model) self.layers = nn.ModuleList([ EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers) ]) self.d_model = d_model
def forward(self, x, mask=None): x = self.embedding(x) * math.sqrt(self.d_model) x = self.positional_encoding(x)
for layer in self.layers: x = layer(x, mask)
return x
class TransformerDecoder(nn.Module): def __init__(self, vocab_size, d_model, num_heads, num_layers, d_ff=2048, dropout=0.1): super(TransformerDecoder, self).__init__() self.embedding = nn.Embedding(vocab_size, d_model) self.positional_encoding = PositionalEncoding(d_model) self.layers = nn.ModuleList([ DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers) ]) self.d_model = d_model
def forward(self, x, enc_output, look_ahead_mask=None, padding_mask=None): x = self.embedding(x) * math.sqrt(self.d_model) x = self.positional_encoding(x)
for layer in self.layers: x = layer(x, enc_output, look_ahead_mask, padding_mask)
return x
class Transformer(nn.Module): def __init__(self, vocab_size, d_model, num_heads, num_layers, d_ff=2048, dropout=0.1): super(Transformer, self).__init__()
self.encoder = TransformerEncoder(vocab_size, d_model, num_heads, num_layers, d_ff, dropout) self.decoder = TransformerDecoder(vocab_size, d_model, num_heads, num_layers, d_ff, dropout) self.output_layer = nn.Linear(d_model, vocab_size)
def forward(self, src, tgt, src_mask=None, tgt_mask=None): enc_output = self.encoder(src, src_mask)
dec_output = self.decoder(tgt, enc_output, tgt_mask, src_mask)
return self.output_layer(dec_output)
vocab_size = 10000 d_model = 512 num_heads = 8 num_layers = 6 dropout = 0.1
transformer = Transformer(vocab_size, d_model, num_heads, num_layers, dropout=dropout)
src = torch.randint(0, vocab_size, (32, 100)) tgt = torch.randint(0, vocab_size, (32, 100))
src_mask = None tgt_mask = None
output = transformer(src, tgt, src_mask, tgt_mask)
print("Output shape:", output.shape)
|